수실잡
공부는 저희 친구들이 잘해요
수실잡
전체 방문자
오늘
어제

블로그 메뉴

  • 🏠블로그 홈
  • 💭태그 클라우드
  • 📬방명록
  • 🛠️블로그 관리
  • 📝글 쓰러 가기
  • 분류 전체보기 (127)
    • 교양(학문의 기초) (22)
      • 미적분학 (1)
      • 물리 (1)
      • 화학 (1)
      • 생물 (0)
      • 통계 (0)
      • 공학수학 (19)
    • 프로그래밍 언어 (2)
      • C (0)
      • C++ (0)
      • Java (0)
      • Python (2)
      • MATLAB (0)
      • R (0)
      • Julia (0)
    • 수학 (35)
      • 집합론 (Set Theory) (19)
      • 해석개론 (9)
      • 해석개론의 정수 (1)
      • 선형대수학 (1)
      • 미분방정식 (0)
      • 실해석학 (0)
      • 복소해석학 (0)
      • 대수학 (0)
      • 위상수학 (0)
      • 미분기하학 (0)
      • 응용수학 (0)
      • 확률론 (5)
    • 물리학 (32)
      • 물리수학 (3)
      • 역학 (9)
      • 전자기학 (13)
      • 양자물리 (0)
      • 열역학과 통계물리 (5)
      • 전자기파와 광학 (0)
      • 응집물질물리학 (2)
      • 논문 리뷰 (0)
    • 화학 (16)
      • 물리화학 (11)
      • 분석화학 (1)
      • 유기화학 (1)
      • 무기화학 (0)
      • 생화학 (3)
      • 고분자화학 (0)
      • 화학실험 (0)
      • 논문 리뷰 (0)
    • 재료공학 (1)
      • 재료공학원리 (0)
      • 재료열역학 (0)
      • 결정학개론 (0)
      • 재료상변태 (0)
      • 재료의 기계적 거동 (0)
      • 재료의 전자기적 성질 (1)
      • 재료역학 (0)
      • 기타 (0)
    • 컴퓨터공학 (9)
      • 자료구조 및 알고리즘 (0)
      • 인공지능 (0)
      • 양자컴퓨터 (1)
      • 컴퓨터구조 (5)
      • 논리설계 (0)
      • 컴파일러 (0)
      • 운영체제 및 시스템프로그래밍 (1)
      • 논문 리뷰 (1)
      • 계산이론 (1)
    • 전기전자공학 (0)
      • 전기전자회로 (0)
      • 소자 (0)
      • 집적회로 (0)
      • 신호처리, 제어공학 (0)
      • 전파공학 (0)
      • 전력전자공학 (0)
    • 기계공학 (2)
      • 고체역학 (2)
      • 열역학 (0)
      • 동역학 (0)
      • 유체역학 (0)
    • 언어학 (2)
      • 음성학 (0)
      • 음운론 (0)
      • 형태론 (0)
      • 통사론 (2)
    • 기타 등등 (6)
      • 학회리뷰 (3)
      • 꿀팁 (0)
      • 역대 교양수학 성적 통계량 정리 (1)
      • 기타 등등 (2)

공지사항

인기 글

최근 글

최근 댓글

태그

  • 확산
  • 행렬식
  • ZFC 집합론
  • 선형대수
  • 가역
  • 열 및 통계물리
  • 선형변환
  • 레닌저 생화학
  • Atkins' Physical Chemistry
  • 벡터공간
  • 벡터
  • Thermal and statistical physics
  • 백응생
  • ZFC Set Theory
  • 행렬
  • 차원
  • Diffusion
  • 물리화학
  • 레닌저생화학
  • Athreya
  • 랭크
  • 공학수학
  • 기본행렬
  • 텐서
  • 일차독립
  • Random walk
  • Physical Chemistry
  • 확률론
  • 앳킨스 물리화학
  • 컴퓨터구조

티스토리

hELLO · Designed By 정상우.
수실잡

공부는 저희 친구들이 잘해요

수학/확률론

[Athreya] 7.2. Borel-Cantelli Lemmas, Tail $\sigma$-algebras, and Kolmogorov's 0-1 Law

By Palette_
2022. 8. 10. 22:40
Language

이 글은 언어로 작성되어 있습니다.
익숙하신 언어를 선택하십시오.

This post is written in Language.
Select the language you prefer.

この文は言語で作成されています。
使用する言語を選択してください。


$\def\NN{\mathbb{N}}$$\def\RR{\mathbb{R}}$$\def\eps{\epsilon}$$\def\calT{\mathcal{T}}$$\def\calP{\mathcal{P}}$$\def\calL{\mathcal{L}}$$\def\calR{\mathcal{R}}$$\def\calC{\mathcal{C}}$$\def\calF{\mathcal{F}}$$\def\calB{\mathcal{B}}$$\def\calS{\mathcal{S}}$$\def\calA{\mathcal{A}}$$\def\calG{\mathcal{G}}$$\newcommand{\inner}[2]{\langle#1, #2\rangle}$$\newcommand{\abs}[1]{\left\vert#1\right\vert}$$\newcommand{\norm}[1]{\left\Vert#1\right\Vert}$$\newcommand{\paren}[1]{\left(#1\right)}$$\newcommand{\sqbracket}[1]{\left[#1\right]}$$\def\var{\text{Var}}$$\def\cov{\text{Cov}}$$\newcommand{\pd}[2]{\frac{\partial #1}{\partial #2}}$$\newcommand{\doublepd}[3]{\frac{\partial^2 #1}{\partial #2 \partial #3}}$

Definition. Let $(A_n)_{n=1}^\infty$ be a sequence of sets. Define

$$\limsup_{n \to \infty} A_n := \bigcap_k \bigcup_{n \ge k} A_n$$

and

$$\liminf_{n \to \infty} A_n := \bigcup_k \bigcap_{n \ge k} A_n.$$

Proposition. For a sequence $(A_n)_{n=1}^\infty$ of sets,

$$\limsup A_n = \{\omega : \omega \in A_n \ \text{for infinitely many} \ n\}$$

and

$$\liminf A_n = \{\omega : \omega \in A_n \ \text{for all but finitely many} \ n\}.$$

Proof.

$$\begin{align*} \omega \in \limsup A_n &\iff \omega \in \bigcup_{n \ge k} A_n \ \text{for all} \ k \\ &\iff \text{For each} \ k, \ \text{there exists} \ n_k \ge k \ \text{such that} \ \omega \in A_{n_k}\\ &\iff \omega \in A_n \ \text{for infinitely many} \ n.\\\\ \omega \in \liminf A_n &\iff \omega \in \bigcap_{n \ge k} A_n \ \text{for some} \ k\\ &\iff \text{For some} \ k, \ \omega \in A_n \ \text{for all} \ n \ge k\\ &\iff \omega \in A_n \ \text{for all but finitely many} \ n. \end{align*}$$

$\square$

 

Theorem. Let $(A_n)_{n=1}^\infty$ be a sequence of events.

(a) (The first Borel-Cantelli lemma.) If $\sum_n P(A_n) < \infty$, then $P(\limsup A_n) = 0$.

(b) (The second Borel-Cantelli lemma.) If $\sum_n P(A_n) = \infty$ and $A_n$'s are pairwise independent, then $P(\limsup A_n) = 1$.

Proof.

(a) Let $Z := \sum_{n=1}^\infty I_{A_n}$. By the MCT, $EZ = \sum_n P(A_n) < \infty$, so $P(Z = \infty) = 0$. Since $\limsup A_n = \{Z = \infty\}$, the proof is done.

(b) We may assume $P(A_1) > 0$. Let

$$Z_n := \sum_{i=1}^n I_{A_i}, \quad J_n := \frac{Z_n}{EZ_n}.$$

Note that $EJ_n = 1$ for all $n$. By the pairwise independence of $(A_n)_{n=1}^\infty$ and $EZ_n \to \infty$,

$$\var(J_n) = \frac{\sum_{i=1}^n \var(A_i) }{(EZ_n)^2} =\frac{\sum_{i=1}^n P(A_i)(1-P(A_i))}{(EZ_n)^2} \le \frac{1}{EZ_n} \xrightarrow{n \to \infty} 0.$$

By Chebyshev's inequality, for each $\eps > 0$

$$P(\abs{J_n - 1} \ge \eps) \le \frac{\var(J_n)}{\eps^2} \xrightarrow{n \to \infty} 0$$

so $J_n \xrightarrow{p} 1$. Thus there exists a subsequence $(J_{n_k})_{k=1}^\infty$ converging to 1 a.e. Now $Z_{n_k} \to \infty$ a.e. $(Z_n)_{n=1}^\infty$ is nondecreasing at each point, so $Z_n \to \infty$ a.e. This implies that $P(\limsup A_n) = 1$. $\square$

 

Proposition. Let $(X_n)_{n=1}^\infty$ be a sequence of random variables.

(a) If $\sum_n P(\abs{X_n} < \eps) < \infty$ for each $\eps > 0$, then $P(\lim X_n = 0) = 1$.

(b) If $(X_n)_{n=1}^\infty$ is pairwise independent and $P(\lim X_n = 0) = 1$, then $\sum_n P(\abs{X_n} < \eps) < \infty$ for each $\eps > 0$.

Proof.

(a) Fix $\eps > 0$. Let $A_n := \{\abs{X_n} > \eps\}$. By the first Borel-Cantelli lemma, $P(\limsup A_n) = 0$. Let $B_\eps := (\limsup A_n)^C$. Then $\omega \in B_\eps$ iff there exists some $N$ such that $\abs{X_n(\omega)} \le \eps$ for all $n \ge N$. Now let $B := \bigcap_{r \ge 1} B_{1/r}$. Then $B = \{\lim X_n = 0\}$. Also $P(B^C) \le \sum_{r \ge 1} P(B_{1/r}^C) = 0$ so $P(B) = 1$.

(b) Suppose $\sum_n P(\abs{X_n} > \eps_0) = \infty$ for some $\eps_0 > 0$. For each  $n$, let $A_n := \{\abs{X_n} > \eps_0\}$. Then $A_n$'s are pairwise independent so by the second Borel-Cantelli lemma, $P(\limsup A_n) = 1$. Note that $\omega \in \limsup A_n$ iff $\abs{X_n(\omega)} > \eps_0$ for infinitely many $n$ iff $\limsup \abs{X_n(\omega)} \ge \eps_0$. It contradicts that $P(\lim X_n = 0) = 0$. $\square$

 

Definition. Let $(X_n)_{n=1}^\infty$ be a sequence of random variables. The tail $\sigma$-algebra of $(X_n)_{n=1}^\infty$ is defined as

$$\calT := \bigcap_{n=1}^\infty \sigma(\{X_k\}_{k \ge n}).$$

An event in $\calT$ is called a tail event. Any $\calT$-measurable random variable is called a tail random variable.

 

$\{\limsup X_n \le c\}$ or $\{\lim X_n = c\}$ are some examples of tail events.

 

Theorem. (Kolmogorov's 0-1 law). Let $(X_n)_{n=1}^\infty$ be a sequence of independent random variables and $\calT$ be its tail $\sigma$-algebra. Then for each $A \in \calT$, $P(A)=0$ or $P(A)=1$.

Proof. For each $n$, let

$$\calF_n := \sigma(\{X_1, \ldots, X_n\}), \quad \calT_n := \sigma(\{X_{n+1}, X_{n+2}, \ldots\}).$$

Then for each $n$, $\calF_n$ is independent of $\calT_n$. The tail $\sigma$-algebra $\calT$ is equal to $\bigcap_n \calT_n$, so each $\calF_n$ is independent of $\calT$. Let $\calA := \bigcup_n \calF_n$, then $\calA$ is independent of $\calT$. One can check that $\calA$ is a $\pi$-system, so $\sigma(\calA)$ is independent of $\calT$. Also,

$$\calT \subseteq \sigma(\{X_n\}_{n \ge 1}) = \sigma(\calA)$$

so $\calT$ is independent of itself. Therefore, for any $A \in \calT$, $P(A \cap A) = P(A)P(A)$ so $P(A) = 0$ or $P(A)=1$. $\square$

 

Definition. An $\calF$-measurable mapping $X : \Omega \to \overline{\RR}$ is called an extended real-valued random variable or $\overline{\RR}$-valued random variable.

 

Corollary. Let $\calT$ be the tail $\sigma$-algebra of a sequence $(X_n)_{n=1}^\infty$ of independent random variables.  Let $X$ be a $\calT$-measurable $\overline{\RR}$-valued random variable. Then there exists $c \in \overline{\RR}$ such that $P(X = c) = 1$.

Proof. If $P(X \le x) = 0$ for all $x \in \RR$, then letting $c = \infty$ completes the proof. Now suppose $P(X \le x) \ne 0$ for some $x \in \RR$. Define

$$B := \{x \in \RR : P(X \le x) \ne 0 \}$$

which is nonempty. For each $x \in B$, $\{X \le x\}$ is a tail event so by Kolmogorov's 0-1 law, $P(X \le x) = 1$. Now let $c := \inf B$. There exists a sequence $(x_n)_{n =1}^\infty$ in $B$ such that $x_n \searrow c$; so $P(X \le c) = \lim_{n \to \infty} P(X \le x_n) = 1$. $\square$


Definition. $(X_n)_{n=1}^\infty$ converges to $X$ in probability, denoted $X_n \xrightarrow{p} X$, if for each $\eps > 0$,

$$\lim_{n \to \infty} P(\abs{X_n - X} > \eps) = 0.$$

 

Theorem. If $X_n \xrightarrow{p} X$, then there exists a subsequence $(X_{n_k})_{k=1}^\infty$ such that $X_{n_k} \to X$ a.e.

Proof. We can take an increasing sequence $(n_k)_{n=1}^\infty$ such that

$$P(\abs{X_n - X} > 2^{-k}) > 2^{-k}$$

for each $k$. Let $A_k := \{\abs{X_{n_k} - X} > 2^{-k}\}$. Let $Z := \sum_k I_{A_k}$. By the MCT, $EZ = \sum_{k} P(A_k) < \infty$ so $Z < \infty$ a.e. If $Z(\omega) < \infty$, then $\omega \in A_k$ for at most finitely many $k$, so $\abs{X_{n_k}(\omega) - X(\omega)} \le 2^{-k}$ for sufficiently large $k$. Therefore, $X_{n_k} \to X$ a.e. $\square$

'수학 > 확률론' 카테고리의 다른 글

[Athreya] 8.1. Weak Laws of Large Numbers  (0) 2022.08.16
[Athreya] 7.1. Independent Events and Random Variables  (0) 2022.08.08
[Athreya] 6.3. Kolmogorov's consistency theorem  (0) 2022.08.06
[Athreya] 6.2. Random Variables and Random Vectors  (0) 2022.08.04

티스토리툴바