일차독립

    1. 선형대수학의 기초_(18) 대각화 가능성By 서울대의 감자

    이전 글 보러 가기 선형대수학의 기초 마지막 시간입니다! 지금까지 길고 긴 글 읽어주셔서 감사하고요, 유종의 미를 거두어 봅시다. 이번 시간에는 대각화 가능성에 대해 다룹니다. 본격적으로 오늘의 주제를 다루기 전에 잠시 지난 시간 복습을 해봅시다. 지난 시간에 $$A=\begin{pmatrix} 1 & 1 \\ 5 & -3 \end{pmatrix}$$ 의 고윳값과 고유벡터가 각각 $\lambda_1 = -4$, $v_1 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$, $\lambda_2 = 2$, $v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$임을 확인했습니다. 그리고 두 고유벡터 $v_1$, $v_2$가 일차독립이어서 대각화가능하다는 것도 확인..

    1. 선형대수학의 기초_(12) 역행렬By 서울대의 감자

    이전 글 보러 가기 우리는 선형변환의 역변환을 다루면서 역행렬의 개념을 알게 되었습니다. 이번 시간에는 역행렬을 구체적으로 구하는 방법을 소개하겠습니다. 역행렬을 구할 때는 첨가행렬을 이용하는 방법을 주로 사용합니다. $m \times n$ 행렬 $A$와 $m \times p$ 행렬 $B$에 대하여 첨가행렬은 $(A\,|\,B)$인 $m \times (n+p)$ 행렬을 의미합니다. 역행렬을 구할 때 사용하게 될 첨가행렬은 $n \times n$ 행렬 $A$에 대해서 $M = (A \, | \, I_n)$입니다. $A$가 역행렬이 존재한다면 $A^{-1}M = (I_n \, | \, A^{-1})$이 됩니다. 이때 (1-31)에 의해 $A^{-1}$은 가역행렬이므로 기본행렬의 곱입니다. $A^{-1} = ..

    1. 선형대수학의 기초_(3) 일차결합By 서울대의 감자

    이전 글 보러 가기 벡터공간 $\mathsf{V}$의 부분집합 $S=\left\{u_{1}, u_{2}, \cdots, u_{n} \right\}$를 생각합시다. 벡터 $u_{1}, u_{2}, \cdots, u_{n}$와 스칼라 $a_{1}, a_{2}, \cdots, a_{n}$에 대하여 $v \in \mathsf{V}$가 $v = a_{1}u_{1}+a_{2}u_{2}+\cdots+a_{n}u_{n}$를 만족하면 $v$는 $S$의 일차결합이라 하고, 스칼라 $a_{1}, a_{2}, \cdots, a_{n}$는 일차결합의 계수라고 합니다. 우리에게 가장 친숙한 일차결합은 데카르트 좌표일 것입니다. $(2, 3, 1)=2(1, 0, 0) + 3(0, 1, 0) + 1(0, 0, 1)$이죠. 일차결합에..