행렬식

    1. 선형대수학의 기초_(18) 대각화 가능성By 서울대의 감자

    이전 글 보러 가기 선형대수학의 기초 마지막 시간입니다! 지금까지 길고 긴 글 읽어주셔서 감사하고요, 유종의 미를 거두어 봅시다. 이번 시간에는 대각화 가능성에 대해 다룹니다. 본격적으로 오늘의 주제를 다루기 전에 잠시 지난 시간 복습을 해봅시다. 지난 시간에 $$A=\begin{pmatrix} 1 & 1 \\ 5 & -3 \end{pmatrix}$$ 의 고윳값과 고유벡터가 각각 $\lambda_1 = -4$, $v_1 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$, $\lambda_2 = 2$, $v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$임을 확인했습니다. 그리고 두 고유벡터 $v_1$, $v_2$가 일차독립이어서 대각화가능하다는 것도 확인..

    1. 선형대수학의 기초_(17) 고윳값과 고유벡터By 서울대의 감자

    이전 글 보러 가기 드디어 선형대수학의 기초의 마지막 파트입니다. 선형대수학의 기초 마지막 파트에서는 대각화를 다루겠습니다. 선형변환 $\mathsf{T}: \mathsf{V} \rightarrow \mathsf{V}$에 대하여 $[\mathsf{T}]_{\beta}$가 대각행렬이 되게 하는 순서기저 $\beta$를 찾는 것이 대각화의 핵심이라고 할 수 있습니다. 굳이 대각행렬을 찾으려고 하는 이유는 대각행렬이 간단하기 때문입니다. 특히 행렬의 곱에서는 대각행렬이 일반적인 행렬보다 훨씬 계산이 편리한 것은 말할 것도 없습니다. (1-29) 벡터공간 $\mathsf{V}$의 선형연산자 $\mathsf{T}$에 대하여 영벡터가 아닌 벡터 $v \in \mathsf{V}$가 어떤 스칼라 $\lambda$에 대..

    이전 글 보러 가기 이번 시간에는 행렬식의 성질을 배워보겠습니다. (1-43) $\mathrm{det}(A)=\mathrm{det}(A^t)$ 행렬식의 정의에 의해 $$\begin{aligned} \mathrm{det}(A^t) & = \displaystyle \sum_{\sigma \in S_n} \mathrm{sgn}(\sigma)(A^t)_{1 \sigma(1)} (A^t)_{2 \sigma(2)} \cdots (A^t)_{n \sigma(n)} \\ & = \displaystyle \sum_{\sigma \in S_n} \mathrm{sgn}(\sigma)a_{\sigma(1) 1} a_{\sigma(2) 2} \cdots a_{\sigma(n) n} \end{aligned}$$ 입니다. 한편 $..

    1. 선형대수학의 기초_(16) 행렬식의 성질By 서울대의 감자

    이전 글 보러 가기 이번 시간에는 행렬식의 성질을 배워보겠습니다. (1-43) $\mathrm{det}(A)=\mathrm{det}(A^t)$ 행렬식의 정의에 의해 $$\begin{aligned} \mathrm{det}(A^t) & = \displaystyle \sum_{\sigma \in S_n} \mathrm{sgn}(\sigma)(A^t)_{1 \sigma(1)} (A^t)_{2 \sigma(2)} \cdots (A^t)_{n \sigma(n)} \\ & = \displaystyle \sum_{\sigma \in S_n} \mathrm{sgn}(\sigma)a_{\sigma(1) 1} a_{\sigma(2) 2} \cdots a_{\sigma(n) n} \end{aligned}$$ 입니다. 한편 $..

    1. 선형대수학의 기초_(15) 행렬식By 서울대의 감자

    이전 글 보러 가기 오늘은 행렬식의 정의에 대해서 다루겠습니다. 행렬식이란 $f: \mathsf{M}_{n \times n} \rightarrow F$인 함수로, 행렬의 가역성을 판단할 때 쓰이는 함수입니다. 정사각행렬만 가역행렬이 될 수 있으므로 행렬식은 정사각행렬에서만 정의됩니다. 정사각행렬이 아닌 행렬은 당연히 비가역이기 때문에 따져볼 필요도 없기 때문입니다. 먼저 행렬식의 정의를 살펴보기 이전에 행렬식의 정의를 살펴봅시다. 정의를 살펴보기도 전에 성질을 살펴본다는 것이 이상하게 보일지 모르겠습니다. 하지만 행렬식의 정의는 매우 복잡하고요, 무엇보다 행렬식의 참의미가 무엇인지는 행렬식의 성질을 알아야 알 수 있습니다. (1-41) 행렬 $A=\begin{pmatrix} a_1 \\ a_2 \\ \v..