랭크

    1. 선형대수학의 기초_(11) 기본행렬과 행렬의 랭크By 서울대의 감자

    이전 글 보러 가기 지난 시간에 랭크가 3인 행렬 $$A=\begin{pmatrix} 1 & 2 & 1 & 3 \\ 1 & -1 & 4 & 2 \\ 2 & 6 & -2 & 3 \\ -1 & -1 & 0 & 1 \end{pmatrix}$$ 을 기본행렬연산을 통해 대각 성분은 0 또는 1이고, 나머지 성분은 모두 0인 행렬 $$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$ 로 바꿀 수 있음을 확인했고, 그러면서 1의 개수가 행렬의 랭크랑 관련 있을 것 같다는 암시를 했습니다. 오늘 다룰 내용이 바로 기본행렬과 행렬의 랭크 사이의 관계입니다. (1-30) 랭크가 $r$인 $m \tim..

    1. 선형대수학의 기초_(10) 기본행렬By 서울대의 감자

    이전 글 보러 가기 이번 시간에 기본행렬에 대해서 배우겠습니다. 먼저 기본행렬연산에 대해 다루겠습니다. 기본행렬연산에는 3가지가 있습니다. (1-21) 행렬 $A$에 대하여 $A$의 두 행[열]을 교환하는 것 $A$의 한 행[열]에 0이 아닌 스칼라를 곱하는 것 $A$의 한 행[열]에 다른 행[열]의 스칼라 배를 더하는 것 예를 들어 행렬 $$M=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ 1 & 1 & 2 & 3 \end{pmatrix}$$에 대하여 1행과 2행을 바꾸는 1형 행연산을 수행하면 $$M_1 = \begin{pmatrix} 4 & 3 & 2 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 3 \end{pmatrix}$$이 됩니다...

    1. 선형대수학의 기초_(9) 행렬의 랭크By 서울대의 감자

    이전 글 보러 가기 오늘은 행렬의 차원에 대해서 배워보겠습니다. 먼저 행렬의 차원(랭크)이 어떻게 정의되는지 살펴봅시다. (1-20) 행렬 $A \in \mathsf{M}_{m \times n}$에 대하여 $A$의 차원(랭크)은 선형변환 $\mathsf{L}_{A}: F^n \rightarrow F^m$의 랭크로 정의하고, $\mathrm{rank}(A)$라 표기한다. 행렬의 차원을 선형변환의 랭크로 정의함으로써 행렬의 랭크의 몇 가지 성질을 얻을 수 있습니다. (1-25) $n \times n$ 행렬이 가역이기 위한 필요충분조건은 행렬의 랭크가 $n$인 것이다. 차원이 각각 $n$, $m$인 벡터공간 $\mathsf{V}$, $\mathsf{W}$와 각각의 순서기저 $\beta$, $\gamma$, 선..